大型网站压力测试及优化方案

白癜风诚信坐标企业 http://m.39.net/pf/a_6169106.html

作者:邴越

来自:cnblogs.   ●cpu占用率

  ●内存使用情况

  ●磁盘I/O速度、传输和读写比率

  ●文件系统的使用率

  ●网络I/O速度、传输和读写比率、错误统计率与传输包的大小

  ●消耗资源最多的进程

  ●计算机详细信息和资源

  ●页面空间和页面I/O速度

  ●用户自定义的磁盘组

  ●网络文件系统

(2)使用rpc.rstatd监控系统性能

rpc.rstatd通常配合LoadRunner一起使用,注意与系统服务rpc.statd进行区分。

rstatd后台程序可以从系统核心中获取系统性能统计的相关信息,将结果返回给调用程序。

进行压力测试时,LoadRunner客户端通过给服务器上的rstatd后台程序发送请求,来收集应用或数据库服务器的性能数据。

(3)针对不同的服务合理配置资源监控方案

以Java服务为例,在压测同时可以对JVM虚拟机进行性能监控,这方面常用的有Jvisualvm、jps、jstack等。

下面是Jvisualvm的应用界面,可以监控本地和远程的JVM实例运行状态。

5针对测试报告进行针对性优化

在压力测试发现问题以后,就要进行有针对性的优化。对于不同的系统,这个过程的策略并不是确定的,但是大概可以划分为以下几个步骤:

1.定位性能瓶颈,找出系统存在的问题

不同系统的特点不同,在性能瓶颈上也有不同的表现,一般来说,下面的几个方面通常存在比较大的优化空间:

(1)磁盘I/O及文件操作

由于磁盘I/O读写的速度要比内存慢很多,程序在运行过程中,如果需要等待磁盘I/O完成,那么低效的I/O操作会拖累整个系统。

(2)网络操作

对网络数据进行读写的情况与磁盘I/O类似。由于网络环境的不确定性,尤其是对互联网上数据的读写,网络操作的速度可能比本地磁盘I/O更慢。

(3)CPU

对计算资源要求较高的应用,由于其长时间、不间断地大量占用CPU资源,那么对CPU的争夺将导致性能问题。如科学计算、3D渲染等对CPU需求旺盛的应用。

(4)高并发下的上下文切换及锁竞争等

高并发程序如果没有做好优化,存在大量的锁竞争,激烈得锁竞争将会明显增加线程上下文切换的开销,对性能造成极大的影响

(5)数据库

大部分应用程序都离不开数据库,而海量数据的读写操作可能是相当费时的。而应用程序可能需要等待数据库操作完成或者返回请求的结果集,那么缓慢的同步操作将成为系统瓶颈。

2.确定调整目标,提出解决方案

找到系统的性能问题以后,需要作出对应的解决方案。

典型的影响性能的问题,比如:

(1)系统对高并发的场景响应不足,如数据库连接池过低,服务器连接数超过上限,数据库锁控制考虑不足等

(2)内存泄露,如在长时间运行下,内存没有正常释放,发生宕机等

(3)数据库优化不足,业务日益增长,关联表众多,SQL不够优化等

定位到上述问题,接下来就是提出合理的调整目标,

比如服务器资源有限,可以通过配置更多的机器,服务上云等进行优化;

如果对高并发支持不好,就可以在代码层面优化,提高并发支持;

数据库性能问题,如慢查询等问题,就可以进行SQL语句优化等。

3.实施解决方案,进行迭代开发

上一步的分析给出了一个初步的性能优化方案,接下来就是针对方案中提到的内容进行针对性的改进。

这个过程可以应用敏捷的思想进行迭代,在开发完成后,为了对比优化结果,可以对调优后的系统进行小范围测试。

4.进行基准测试并分析调优结果

数据说明一切,性能优化的结果不能简单的通过“感觉系统变快了”来衡量,最好是通过对比优化前后的测试结果,用图表的方式直观的把优化结果展示出来。基准测试是指通过设计科学的测试工具和方式方法,实现对一类测试对象的某项性能指标进行定量的和可对比的测试。对比测试结果,结合容量评估等工作,可以让系统发挥最大的效用。

一个阶段的优化工作完成以后,最好是总结反思一下,比如本次优化是否达到了目标?系统的整体性能是否得到了改善?用户体验是否得到了提升?以及如何在接下来的开发工作中做的更好。

长按回复关键词,看解决方案:

高并发

分布式

性能优化

微服务

数据库

缓存

大数据

面试

程序员规划

架构师

一起搬砖的点个赞

                


转载请注明:http://www.guyang114.com/bdyh/yxgj/15696.html

  • 上一篇文章:
  •   
  • 下一篇文章: 没有了